Glossary of cellular acronyms


A

AuC : Authentication Center
Supports authentication of subscribers and encryption of wireless call sections in a mobile network (authentication key management). For authentication and encryption, it manages subscriber phone numbers, device numbers, authentication keys, etc. in its own database to perform defined authentication algorithms.
이동통신 망에서 가입자에 대한 인증 및 무선 통화구간에 대한 암호화 기능을 지원(인증키 관리)한다. 인증 및 암호화를 위하여, 자체 데이터베이스에서 가입자에 대한 전화번호, 단말기번호, 인증 키 등을 관리하여, 정의된 인증 알고리즘을 수행한다.

AMBR : Aggregate Maximum Bit Rate
AMBR defines the maximum possible bit rate allowed for a particular LTE user for all of their best effort (or non-guaranteed bit rate) services

AKA : Authentication and Key Agreement

APN : Access Point Name

ASME : Access Security Management Entity

AS : Access Stratum, Features that work between the device and the wireless network <-> NAS



B

BLER : Block Error Ratio

BTS : Base Transceiver Station

BSC : Base Station Controller


C

CSCF : Call Session Control Function
It is a system that performs SIP-based call control and session handling functions on 3G networks and provides various multimedia services.
3G 네트워크 상에서 SIP 기반의 Call Control 및 Session Handling 기능을 수행하는 시스템으로 다양한 멀티미디어 서비스를 제공한다.

CDR : Charging Data Record, Call Detail Record

CGI : Cell Grobal Identifier


CoMP :Coordinated Multipoint
- 4G LTE Advanced CoMP, coordinated multipoint is used to send and receive data to and from a UE from several points to ensure the optimum performance is achieved even at cell edges.
LTE CoMP or Coordinated Multipoint is a facility that is being developed for LTE Advanced - many of the facilities are still under development and may change as the standards define the different elements of CoMP more specifically.
LTE Coordinated Multipoint is essentially a range of different techniques that enable the dynamic coordination of transmission and reception over a variety of different base stations. The aim is to improve overall quality for the user as well as improving the utilisation of the network.
Essentially, LTE Advanced CoMP turns the inter-cell interference, ICI, into useful signal, especially at the cell borders where performance may be degraded.
Over the years the importance of inter-cell interference, ICI has been recognised, and various techniques used from the days of GSM to mitigate its effects. Here interference averaging techniques such as frequency hopping were utilised. However as technology has advanced, much tighter and more effective methods of combating and utilising the interference have gained support.

- http://www.radio-electronics.com/info/cellulartelecomms/lte-long-term-evolution/4g-lte-advanced-comp-coordinated-multipoint.php



CPRI : Common Public Radio Interface : 
Interface standards / communication standards between distant DUs and RUs
원거리 DU와 RU간 Interface 규격 / 통신규격

CQI : Channel Quality Indicator.
Information signalled by a UE to the base station to indicate a suitable data rate (typically a Modulation and Coding Scheme (MCS) value) for downlink transmissions, usually based on a measurement of the received downlink Signal to Interference plus Noise Ratio (SINR) and knowledge of the UE’s receiver characteristics. See 3GPP S36.213 Section 7.2.3.


D


DCCH : Dedicated Control Channels
The DCCH is a single timeslot on an RF carrier that is used to convey eight Stand-alone Dedicated Control Channels (SDCCH). A single MS for call setup, authentication, location updating and SMS point to point use a SDCCH. As we will see later, SDCCH can also be found on a BCCH/CCCH timeslot, this configuration only allows four SDCCHs.
b. Slow Associated Control Channel (SACCH) Conveys power control and timing information in the downlink direction (towards the MS) and Receive Signal Strength Indicator (RSSI), and link quality reports in the uplink direction.
c. Fast Associated Control Channel (FACCH) The FACCH is transmitted instead of a TCH. The FACCH ‘‘steals” the TCH burst and inserts its own information. The FACCH is used to carry out user authentication, handovers and immediate assignment.
All of the control channels are required for system operation, however, in the same way that we allow different users to share the radio channel by using different timeslots to carry the conversation data, the control channels share timeslots on the radio channel at different times. This allows efficient passing of control information without wasting capacity that could be used for call traffic. To do this we must organize the timeslots between those, which will be used for traffic, and those, which will carry control signaling.

DRB : Data Radio Bearer.
A radio bearer which carriers user data as opposed to control plane signalling.

DRX : Discontinuous Reception
http://www.sharetechnote.com/html/Handbook_LTE_DRX.html



E

ECGI : EPS Cell Grobal Identifier (어떤 기지국(eNB)의 몇번째 Cell에 붙어 있는지를 나타냄)

ECM : EPS Connection Management = RRC connection + S1 signaling

eICIC : enhanced Inter-Cell Interference Coordination

EIR : Equipment Identification Register
Stores and manages the International Mobile Station Equipment Identity (IMEI) for devices. Performs the function of detecting inappropriate mobile devices and managing lists of these devices to restrict their use.
단말에 대한 IMEI(International Mobile Station Equipment Identity)를 저장하고 관리한다. 부적절한 이동통신 단말기를 검출하고, 이들 단만ㄹ에 대한 목록을 관리함으로써 부적절한 단말에 대한 사용을 제한하는 기능을 수행한다.

eMBMS : evolved Multimedia Broadcast and Multicast Service

EMM : EPS Mobility Management

eNB : evolved Node B

E-RAB : E-UTRAN Radio Access Bearer

ESM : EPS Session Management


G

GBR : Guaranteed Bit Rate
Bandwidth Guaranteed EPS Bearer, Dedicated EPS Bearer

GGSN : Gateway GPRS Support Node
A GPRS network entity that acts as a wireless gateway between the SGSN and the PDN, which enables mobile subscribers to access the PDN. In the GPRS network, the Internet is accessed through the GGSN, which acts as a gateway to the external network. In other words, the GGSN is a gateway device for sending packet data to the Internet network.
SGSN과 PDN 사이의 무선 게이트웨이 역할을 하는 GPRS망 실체, 이 GGSN을 이용하여 이동 가입자가 PDN을 접속할 수 있다. GPRS 망에서는 외부망과 게이트웨이 역할을 담당하는 GGSN을 통하여 인터넷과 접속한다. 다시 말해 GGSN은 패킷 데이터를 인터넷망으로 보내기 위한 게이트웨이 장치이다.

GSN : GPRS Support Node

GMSC : Gateway MSC

GTP : GPRS Tunneling Protocol
GPRS Tunneling protocol is an important IP/UDP based protocol used in GSM, UMTS and LTE core networks. It is used to encapsulate user data when passing through core network and also carries bearer specific signalling traffic between various core network entities

GTP-C : GTP-Control
GTP-U : GTP-User plane (data)

GUMMEI : Globally Unique Mobile Management Entity Identifer
GUTI : Globally Unique Temporary Identifier
참조 : LTE Identifiers => http://www.eventhelix.com/lte/LTE-identifiers.pdf


H

HLR : Home Location Register
It is a server that stores fixed information such as device phone number, user identification number (IMSI), personal information, service type, device identification number (IMEI), authentication information, and current dynamic location information such as VLR address, MSC address, and MS Routing Number (MSRN) of the current location. This HLR can be installed with the MSC or separately.
단말기 전화번호, 사용자 식별번호(IMSI), 인적정보, 서비스 종류, 단말기식별번호(IMEI), 인증정보 등의 고정정보와 현재의 동적인 위치정보(현재 위치한 곳의  VLR주소, MSC주소, MSRN(MS Routing Number 등)를 저장하는 서버이다. 이 HLR은 MSC에 함께 설치되거나 별도로 설치될 수 있다.

HSS : Home Subscriber Server
It is a system that acts as a master database for users and integrates the HLR and AuC functions of the 2G network. HSS performs functions such as mobility management, user authentication information generation, service provisioning, service authentication, access authorization, and call/session setup support. HSS can be considered an HLR super set that includes all 3G HLR functions and manages information about IMS subscribers.
사용자에 대한 마스터 데이터베이스 역할을 수행하는 시스템으로, 2G망의 HLR과 AuC 기능이 통합된 형태의 시스템이다. HSS는 이동성 관리, 사용자 인증 정보 생성, 서비스 Provisioning, 서비스 인증, 접속 권한부여 및 Call/Session 설정 지원 기능 등을 수행한다. HSS는 3G HLR 기능을 모두 포함함과 동시에 IMS 가입자에 대한 정보를 관리하는 HLR Super set 이라고 볼 수 있다.


I

ICIC : Inter Cell Interference Coordination

IMS : IP Multimedia Subsystem
A core network infrastructure that enables the provision of various multimedia services based on IP.
IP를 기반으로 다양한 멀티미디어 서비스를 제공할 수 있도록 하는 core network infra

http://www.3glteinfo.com/ims-volte-architecture/
http://www.3glteinfo.com/volte-call-flow-procedures/

IMSI : International Mobile Station Identifier = 15자리 : MCC + MNC + MSIN



M

MBMS : Multimedia Broadcast and Multicast Service

MCC : Mobile Country Code 한국 = 450
MNC : Mobile Network Code SK = 05
MSIN : Mobile Subscriber Identifier Number

MDT : Minimization of Drive Tests
Goal of MDT in 3GPP Rel.10
– Automatic UE measurements collection and data logging used to replace the manual drive testing that the operators have to perform in their networks
– Evaluation of network performance per physical location
– For both HSPA & LTE
http://blog.3g4g.co.uk/2010/12/minimization-of-drive-tests-mdt-in-3gpp.html


MGW : Media GateWay

MME : Mobility Managemnet Entity
The Mobility Managemnet Entity is the main signaling node in the EPC. It is responsible for initiating paging and authentication of the mobile device. It also keeps location inforamtion at the Tracking Area level for each user and is involved in choosing the right gateway during the initial registration process. MME connects to eNBs through the S1-MME interface and connects to S-GW through the S11 interface. Multiple MMEs can be grouped together in a pool to meet increasing signaling load in the network. The MME also plays an important part in handover signaling between LTE and 2G/3G networks.

-UE를 인증한다. 인증프로토콜은 EPS-AKA 이고, 인증을 위한 Key 정보는 HSS에 들어있고, 이 Key 정보를 HSS로 부터 받아서 UE 인증을 수행한다.
-EPS 베어러 관리. EPS 베어러란 UE가 인터넷을 사용하기 위해 (UE ~ eNB ~ S-GW ~ P-GW) 구간에서 생성되는 논리적인 터널(GTP 터널)이라 할 수 있으며, MME는 그 터널의 생성/변경/해제 등의 행위에 관여한다.
-가입자의 Mobility 상태를 관리한다. 즉 UE가 소속된 망, 인터넷 사용 중인지 아닌지 등의 idle state 관리.


MSC : Mobile Switching Center
It is a type of telephone exchange that has multiple BSCs and provides connectivity to external landlines or cell phones located elsewhere. Of course, compared to a regular telephone exchange, it has additional features, such as sending paging messages to locate incoming phones, because it needs to support the mobility of terminals.
여러 개의 BSC를 거느리면서, 외부 일반전화 또는 다른 곳에 있는 휴대폰과의 연결을 제공하는 일종의 전화교환기이다. 물론 일반 전화교환기에 비하여, 단말의 이동성을 지원해야 하기 때문에 수신 휴대폰을 탐색하기 위한 페이징 메세지를 전송하는 등의 기능이 추가되어 있다.



N

NE : Network Element

NAS : non-Access-Stratum (비접속 계층) , 규격정의 = 3GPP TS 24.301 문서[1]
Behavioral functions between the terminal and the EPC <-> AS
단말과 EPC 사이에서의 동작 기능들 <-> AS
The non-access stratum (NAS) is highest stratum of the control plane between UE and MME at the radio interface. Main functions of the protocols that are part of the NAS are the support of mobility of the user equipment (UE) and the support of session management procedures to establish and maintain IP connectivity between the UE and a packet data network gateway (PDN GW).
- NAS control protocol performs followings : 
EPS bearer management, Authentication, ECM-IDLE mobility handling, Paging origination in ECM-IDLE, Security control.
- The NAS protocol is used on the control plane between the UE and the core network, the MME. The NAS layer is handling mobility related functions between the UE and the core network, like attach and tracking area update, authentication and security. It is also responsible for establishing and maintaining IP connectivity between the UE and the core network.


O

OAM : Operation, Administration and Maintenance (Management)

OCS : Online Charging System
The P-GW manages real-time usage and delivers the information to the OCS, which centrally manages the remaining usage (balance or credit) for each user, determines which subscribers have used up their credit, and notifies the P-GW so that they can no longer use the Internet.
실시간 사용량은 P-GW에서 관리하고 그 정보를 OCS로 전달해주면 OCS가 사용자별로 남은 사용량(balance 혹은 credit)이 얼마인지 중앙관리를 하고, credit을 다 사용한 가입자를 판별/판단하여 더 이상 인터넷 사용을 못하도록 P-GW에 그 사실을 알려준다.

OFCS : Offline Charging System
Equipment centrally managed by receiving CDRs delivered by P-GW
P-GW가 전달해 주는 CDR을 받아 중앙에서 관리하는 장비

OSS : Operation Support System
The OSS supports network planning, network provisioning, service fulfillment, and service assurance from a common core of service and resource management. OSS solutions aim to not only improve the efficiency of planning and operations teams, but they also contribute significant financial benefits to a company’s overall CAPEX and OPEX network equipment
budgets.


P

PCRF : Policy and Charging Rule Function

PDCCH : Physical Downlink Control CHannel. 
A downlink control channel used to support efficient data transmission in LTE. A PDCCH carries a message known as Downlink Control Information (DCI), which includes transmission resource assignments and other control information for a UE or group of UEs. Many PDCCHs can be transmitted in a subframe. See 3GPP TS36.212 Section 5.3.3
and TS36.211 Section 6.8.

PDCP : Packet Data Convegence Protocol
Header Compression, Ciphering, Data Integrity, etc.
헤더 압축, 암호화, 데이터 무결성 등

PUCCH : Physical Uplink Control CHannel.
The LTE uplink physical channel carrying uplink control information including Channel Quality Indicators (CQI), Hybrid Automatic Retransmission reQuest (HARQ) ACKnowledgment/Negative ACKnowledgment (ACK/NACK) and uplink scheduling requests. See 3GPP TS36.211 Section 5.4.

This LTE channel is used to carry UCI(Uplink Control Information). UCI can also be transported using PUSCH channel. An LTE UE can never transmits both PUCCH and PUSCH during the same subframe.
• If UE has application data OR RRC signalling then UCI is carried over PUSCH
• If UE does not have any application data OR RRC signalling then UCI is carried over PUCCH
This is a stand-alone uplink physical channel. This PUCCH control signaling channel comprises following:
•  HARQ ACK/NACK
•  CQI-channel quality indicators
•  MIMO feedback - RI(Rank Indicator),PMI(Precoding Matrix Indicator)
•  scheduling requests for uplink transmission
•  BPSK or QPSK used for PUCCH modulation

http://www.rfwireless-world.com/Terminology/LTE-PUCCH-Physical-Uplink-Control-Channel.html

PUSCH : Physical Uplink Shared CHannel.
The LTE uplink physical channel carrying scheduled data traffic, and control signalling if some is required to be transmitted in the same subframe. See 3GPP TS36.211 Section 5.3.

PDN : Packet Data Network

PDSN : Packet Data Serving Node

P-GW : PDN Gateway
-Assigning IP addresses to terminals (via the UE access procedure specified by 3GPP, not the DHCP protocol) and anchoring to S-GWs during handover.
-Apply different QoS policies per UE (prioritization, bandwidth control, etc.)
-Managing accounting data per UE. The P-GW delivers this data to the OFCS in the form of a CDR (Charging Data Record), which means that the P-GW creates/manages all the history of when you accessed, how much data you used, and how long you accessed, and delivers the data to the OFCS.
-단말에 IP 주소 할당(DHCP 프로토콜이 아닌 3GPP에서 규정하고 있는 UE 접속절차를 통해서 IP 할당)하고 핸드오버시 S-GW들에 대한 anchoring 수행.
-UE별로 서로 다른 QoS 정책 적용(우선순위, 대역폭 제어 등의 행위를 수행)
-UE별로 Accounting Data 관리. Accounting data라 함은 대표적으로 상하향 트래픽 양, 접속시간 등이 될 수 있으며, P-GW는 이 데이터를 CDR(Charging Data Record) 형태로 OFCS에게 전달한다. 즉 언제 접속했고 얼마나 데이터를 사용했고, 얼마동안 접속했는지 이력을 P-GW가 모두 생성/관리하고 그 데이터를 OFCS로 전달하는 것이다.


PLMN(Public Land Mobile Network)
A carrier's network identification number. When using overseas roaming services, you can connect to the network of your preferred carrier by registering your FPLMN (UserPLMn), which is created and supplied to you by your carrier when you activate your mobile phone and roam. If you do not set a code, you will be automatically connected to the network of the operator that is found.
사업자의 네트워크 식별번호를 말한다. 해외로밍 서비스 이용 시, 선호하는 사업자의 식별번호를 등록하면 해당 이동통신 사업자의 네트워크로 접속(UserPLMn에 등록 가능하며,FPLMN은 이동통신 사업자가 휴대폰 개통 및 로밍시에 작성하여 사용자에게 공급한다. 코드를 별도로 설정하지 않을경우 자동으로 검색된 사업자의 네트워크에 접속한다.


Q

QCI QoS Class Identifier
a mechanism used in 3GPP Long Term Evolution (LTE) networks to ensure bearer traffic is allocated appropriate Quality of Service (QoS). Different bearer traffic requires different QoS and therefore different QCI values. QCI value 9 is typically used for the default bearer of a UE/PDN for non privileged subscribers.
https://en.wikipedia.org/wiki/QoS_Class_Identifier



R

RAB : Radio Access Bearer

RAN : Radio Access Network

RNC : Radio Network Controller

RRC : Radio Resource Control : Signaling protocols between UE and eNB
A device is allocated resources from the network to use the communication service. A normal device is not used when it is not in use (it is not idle). ) It is called idle and does not communicate with the network (because the limited battery needs to be saved and it is a loss for the network to keep giving resources). At this time, the user presses a button (think of it as a sender) or receives a paging from the network (=someone called me, sent an MMS, sent a KakaoTalk message, etc.), and the device establishes an RRC with the network to perform an action according to the paging.
 단말이 통신 서비스를 이용하기위해 망으로 부터 자원을 할당받는 것입니다. 보통의 단말은 사용되지 않을때(사용하지 않을 때가 아닙니다.) Idle이라 하여 망과 교신하지 않는 상태로 있는데(한정적인 Battery도 아껴야하고 망 입장에서도 자원을 계속 주고 있는 것은 손해이므로) 이때 사용자가 버튼을 누르거나(발신의 입장이라고 생각하시면 쉽습니다), 망으로 부터 Paging을 수신하여(=누군가 나에게 전화를 했거나, MMS를 보냈거나, 카톡 메세지를 보냈거나 등) 단말이 해당 Paging에 맞는 작업을 수행하기 위해 망과 RRC를 맺습니다. 

RRE : RRC Re-Establishment

RLF : Radio Link Failure

RSRP : Reference Signal Received Power.
단말에 수신되는 Reference Signal의 Power, RSRP is applicable in both RRC_idle and RRC_connected modes, LTE에서는 Hard H/O이기 때문에 효율적, 기지국 근처 RSRP ↑
An LTE measurement which provides a cell-specific signal strength metric. This measurement is mainly used to rank different LTE cells according to their signal strength as an input for handover and cell reselection decisions. The RSRP of a cell is defined as the linear average over the power contributions (in Watts) of the Resource Elements (REs) which carry cell-specific RS within the considered measurement bandwidth.
Normally the RSs transmitted on the first eNodeB antenna port are used for SRP determination, but the RS on the second antenna port can also be used if the UE can determine that they are being transmitted. If the UE is equipped with multiple antennas, the reported RSRP value is not permitted to be lower than the RSRP computed on the individual branches. See 3GPP TS36.214 Section 5.1.1.

RSRQ Reference Signal Received Quality.

RSRQ is an LTE measurement which provides a cell-specific signal quality metric. Similarly to Reference Signal Received Power (RSRP), this measurement is mainly used to rank different LTE cells according to their signal quality as an input for handover and cell reselection decisions, for example in scenarios for which RSRP measurements do
not provide sufficient information to perform reliable mobility decisions. The RSRQ is defined as the ratio N · RSRP/(LTE carrier RSSI), where N is the number of Resource Blocks (RBs) of the LTE carrier Received Signal Strength Indicator (RSSI) Measurement bandwidth. While RSRP is an indicator of the wanted signal strength, RSRQ additionally takes the interference level into account due to the inclusion of RSSI. RSRQ therefore enables the combined effect of signal strength and interference to be reported in an efficient way. If the UE is equipped with multiple antennas, the reported RSRQ value is not permitted to be lower than the RSRQ computed on the individual branches. See 3GPP TS36.214 Section 5.1.2.
단말에 수신되는 Power 대비 Reference Signal Power의 비
RSRQ is only application in RRC_connected mode
RSRQ = (RSRP/RSSI) * nuber of RB
신호 세기와 함께 간섭 등을 측정에 포함시키기 때문에, RSRP와 더불어 H/O 결정 지표, 원하는 신호에 대해 많은 정보(인접채널간섭, 열잡음 등) + RB가 포함되어 있기 때문에 실제 환경이 반영된 지표. 단, RSRP/RSSI의 비, RB의 수가 일정하기 때문에 지표 자체가 큰 변동 없음

RSSI Received Signal Strength Indicator.
A measurement defined as the total received wideband power observed by a UE from all sources, including cochannel serving and non-serving cells, adjacent channel interference and thermal noise within the measurement bandwidth. For LTE it is not reported as an
independent measurement, but is an input to the derivation of RSRQ. For RSSI in UTRA and GSM, see 3GPP TS36.214 Sections 5.1.5, 5.1.7 and 5.1.8.
단말에 수신되는 모든 Power의 총 크기
신호 세기에 인접한 채널의 간섭, 열 잡음 포함



S

S1AP : S1 Application Protocol

SAEGW : S-GW and P-GW in one, all-in-one device
System Architecture Evolution (SAE) is the core network architecture of 3GPP's LTE wireless communication standard. 
https://en.wikipedia.org/wiki/System_Architecture_Evolution
http://www.netmanias.com/ko/post/blog/5382/lte-qos-lte-qos-eps-bearer/lte-qos-part-3-p2p-traffic-bandwidth-control-using-the-lte-qos

S-GW : Serving GateWay
eNB간 핸드오버시에 anchoring 역할을 하는 것.

SGSN : Serving GPRS Support Node
A system that performs packet data processing in asynchronous networks (WCDMA, UMTS, GPRS, etc.), and is the equivalent of an exchange in the field of voice services. It is a system element that, together with the GGSN, enables high-speed Internet services in GPRS networks.
비동기망(WCDMA, UMTS, GPRS 등)에서 패킷 데이터 처리를 수행하는 시스템으로, 음성 서비스 분야의 교환기에 해당하는 역할을 수행한다. 이는 GGSN과 함께 GPRS 네트워크에서 초고속 인터넷 서비스를 가능케 하는 시스템 요소이다.

SINR : Signal to Interference pulse Noise Ratio

SIP : Session Initiation Protocol
Defined by the IETF and widely used to control multimedia sessions such as voice and video calls,[1] it is an application-layer signaling protocol that specifies procedures for intelligent terminals (telephones, Internet conferencing, instant messengers, etc.) that wish to communicate on the Internet to identify and locate each other, and to create, delete, or modify multimedia communication sessions between them. It has applications in videoconferencing, streaming video distribution, messaging, subscriber status information, file transfer, and online gaming, where modification means changing the address of a port, inviting more participants, and adding or deleting multimedia streams.
IETF에서 정의한 시그널링 프로토콜로 음성과 화상 통화 같은 멀티미디어 세션을 제어하기 위해 널리 사용되며, 인터넷 상에서 통신하고자 하는 지능형 단말(전화, 인터넷 콘퍼런스, 인스턴트 메신저 등)들이 서로를 식별하여 그 위치를 찾고, 그들 상호 간에 멀티미디어 통신 세션을 생성하거나 삭제 또는 수정하기 위한 절차를 명시한 응용 계층의 시그널링 프로토콜이다. 여기서 수정은 포트의 주소 변경, 더 많은 참여자의 초대, 멀티미디어 스트림의 추가 또는 삭제를 의미하며, 화상 회의, 스트리밍 동영상 유통, 메신저, 가입자 상태 정보, 파일 전송과 온라인 게임에 응용할 수 있다.

SPR : Subscriber Profile Repository

SR : Scheduling Request.
An SR is employed by the UE to request allocation of uplink resources when having data ready for transmission but no resource grant for use of the Physical Uplink Shared CHannel (PUSCH). It is transmitted on the Physical Uplink Control CHannel (PUCCH). See 3GPP TS36.312 Section 5.4.4.
http://www.sharetechnote.com/html/Handbook_LTE_SR.html

SRB : Signalling Radio Bearer.
A radio bearer carrying Radio Resource Control (RRC) signalling messages.


T

TA : Tracking Area

TAC : Tracking Area Code TAC is a unique value assigned to each TA by the carrier.
Tracking Area Code TAC는 통신사업자가 각 TA마다 할당한 고유한 값
(예, 삼성동 TA1=0x0001, 역삼동 TA2=0x0002)

TAI : Tracking Area Identifier PLMN ID (MCC + MNC) + TAC

TAU : Tracking Area Update
Whenever the TA changes, the UE reports to the LTE network (to the MME) that the TA has changed via a TAU message (TAU Request).
UE는 TA가 변경될 때마다 LTE망으로(MME로) TA가 변경되었다는 사실을 TAU 메시지(TAU Request)를 통해 보고

TEID : Tunnel Endpoint Identifier


V

VLR : Visitor Location Register
Query the HLR to temporarily store the subscriber's current location information (LAI), MSIDSN, IMSI, MSRN, Temporary MS Identification (TMSI), etc. When a device moves to a cell managed by an MSC, the MSC instructs the VRL to query the HLR to obtain information about the device. These VLRs are installed per MSC and are usually embedded within the MSC.
HLR에 질의하여 가입자의 현재 위치정보(LAI), MSIDSN, IMSI, MSRN, TMSI(Temporary MS Identification) 등을 임시로 저장한다. 단말이 어떤 MSC로 관리하는 셀로 이동하였을 때, MSC는 VRL에게 해당 단말에 대한 정보를 HLR에 질의하여 확보하도록 한다. 이러한 VLR은 MSC 별로 설치되며, 보통 MSC내에 내장된다.

댓글